Totally Isotropic Subspaces of Small Height in Quadratic Spaces

نویسنده

  • GLENN R. HENSHAW
چکیده

Let K be a global field or Q, F a nonzero quadratic form on KN , N ≥ 2, and V a subspace of KN . We prove the existence of an infinite collection of finite families of small-height maximal totally isotropic subspaces of (V, F ) such that each such family spans V as a K-vector space. This result generalizes and extends a well known theorem of J. Vaaler [16] and further contributes to the effective study of quadratic forms via height in the general spirit of Cassels’ theorem on small zeros of quadratic forms. All bounds on height are explicit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heights and quadratic forms: Cassels’ theorem and its generalizations

In this survey paper, we discuss the classical Cassels’ theorem on existence of small-height zeros of quadratic forms over Q and its many extensions, to different fields and rings, as well as to more general situations, such as existence of totally isotropic small-height subspaces. We also discuss related recent results on effective structural theorems for quadratic spaces, as well as Cassels’-...

متن کامل

Effective Structure Theorems for Symplectic Spaces via Height

Given a 2k-dimensional symplectic space (Z, F ) in N variables, 1 < 2k ≤ N , over a global field K, we prove the existence of a symplectic basis for (Z, F ) of bounded height. This can be viewed as a version of Siegel’s lemma for a symplectic space. As corollaries of our main result, we prove the existence of a small-height decomposition of (Z, F ) into hyperbolic planes, as well as the existen...

متن کامل

ar X iv : 0 80 1 . 47 73 v 1 [ m at h . N T ] 3 0 Ja n 20 08 EFFECTIVE STRUCTURE THEOREMS FOR SYMPLECTIC SPACES VIA HEIGHT

Given a 2k-dimensional symplectic space (Z, F) in N variables, 1 < 2k ≤ N , over a global field K, we prove the existence of a symplectic basis for (Z, F) of bounded height. This can be viewed as a version of Siegel's lemma for a symplectic space. As corollaries of our main result, we prove the existence of a small-height decomposition of (Z, F) into hyperbolic planes, as well as the existence ...

متن کامل

Antidesigns and regularity of partial spreads in dual polar graphs

We give several examples of designs and antidesigns in classical finite polar spaces. These types of subsets of maximal totally isotropic subspaces generalize the dualization of the concepts of m-ovoids and tight sets of points in generalized quadrangles. We also consider regularity of partial spreads and spreads. The techniques that we apply were developed by Delsarte. In some polar spaces of ...

متن کامل

Lagrangian pairs and Lagrangian orthogonal matroids

Represented Coxeter matroids of types Cn and Dn, that is, symplectic and orthogonal matroids arising from totally isotropic subspaces of symplectic or (even-dimensional) orthogonal spaces, may also be represented in buildings of type Cn and Dn, respectively (see [4, Chapter 7]). Indeed, the particular buildings involved are those arising from the flags or oriflammes, respectively, of totally is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014